Metric Tensor Calculations in Curvilinear Coordinates
1. Cartesian Coordinates (3D Euclidean Space)
In Cartesian coordinates (x, y, z), the line element ds2 is:
ds2 = dx2 + dy2 + dz2
Thus, the metric tensor gij is:
gij = [1 0 0] [0 1 0] [0 0 1]
2. Polar Coordinates (2D)
In polar coordinates (r, θ) with transformations:
x = r cos θ, y = r sin θ
The line element ds2 becomes:
ds2 = dr2 + r2 dθ2
Therefore, the metric tensor gij is:
gij = [1 0] [0 r2]
3. Spherical Coordinates (3D)
In spherical coordinates (r, θ, φ) with transformations:
x = r sin θ cos φ y = r sin θ sin φ z = r cos θ
The line element ds2 becomes:
ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2
The metric tensor gij is:
gij = [1 0 0] [0 r2 0] [0 0 r2 sin2 θ]
General Formula for Curvilinear Coordinates
To calculate the metric tensor gij in curvilinear coordinates (q1, q2, ..., qn), use:
gij = ∂xk / ∂qi * ∂xk / ∂qj
This approach can be applied to any curvilinear coordinate system.
Example Calculation in Polar Coordinates
1. Define transformations:
x = r cos θ, y = r sin θ
2. Calculate grr:
grr = (∂x/∂r)2 + (∂y/∂r)2 = 1
3. Calculate gθθ:
gθθ = (∂x/∂θ)2 + (∂y/∂θ)2 = r2
Comments
Post a Comment