Skip to main content

Posts

Matrix Representation of a Relation in Discrete Mathematics

Matrix Representation of a Relation in Discrete Mathematics In Discrete Mathematics, relations can be represented in different ways such as ordered pairs, digraphs, and matrices. Among these, the matrix representation of a relation is very useful for performing operations like union, intersection, complement, and composition of relations. Matrix Representation of a Relation Let $A = \{a_1, a_2, a_3, \dots, a_n\}$ $B = \{b_1, b_2, b_3, \dots, b_m\}$ be two finite sets containing $n$ and $m$ elements respectively. Then the Cartesian product $A \times B$ contains $n \times m$ ordered pairs. Let $R$ be a relation from set $A$ to set $B$. Then, $$ R \subseteq A \times B $$ The matrix of relation $R$ , denoted by $M_R$, is an $n \times m$ matrix defined as follows: $$ M_R = [m_{ij}] $$ where $m_{ij} = 1$ if $(a_i, b_j) \in R$ $m_{ij} = 0$ if $(a_i, b_j) \notin R$ Question 1 Let $A = \{1,2,3,4\}$ $B = \{1,4,6,8,9,16\}$ A rel...
Recent posts

Types of Relations in Discrete Mathematics – Definitions, Examples & Solved Problems

Types of Relations in Discrete Mathematics – Definitions, Examples & Solved Problems Relations are a fundamental concept in Discrete Mathematics and Graph Theory . They are widely used in equivalence relations, partial order relations, posets, lattices, and many real-life applications. Questions based on relations are frequently asked in GTU and engineering mathematics examinations . In this article, we explain the types of relations in a clear and exam-oriented manner with suitable examples and fully solved problems. Question 1 Explain types of a relation with a suitable example. Solution Definition of Relation Let A and B be two non-empty sets. A relation R from set A to set B is defined as a subset of the Cartesian product A × B . Mathematically, $$ R \subseteq A \times B $$ Types of Relations 1. Reflexive Relation A relation R on a set A is said to be reflexive if every element of A is related to itself. $$ (a,a) \in R \quad \text{for ...

Best Online Math Tutor – Ajay Pathak | IGCSE, Calculus & University Mathematics

Best Online Mathematics Tutor – Ajay Pathak Learn Mathematics from School Level to University Level with Conceptual Clarity 👨‍🏫 About Me I am Ajay Pathak , an experienced online Mathematics tutor with a strong academic background in Pure Mathematics, Applied Mathematics, and Physics . I teach students from school level to university level with a focus on conceptual understanding, problem-solving skills, and exam-oriented preparation . Currently, I also explore the use of Python programming in Mathematics and mathematical modeling to help students connect theory with real-world applications. 📘 Subjects I Teach 🔹 School Level Mathematics Basic Mathematics Arithmetic & Number System Algebra (Linear & Quadratic Equations) Polynomials Trigonometry Coordinate Geometry Mensuration Statistics & Probability 🔹 International Curriculum IGCSE Mathematics Cambridge Mathematics Concept-based exam preparation ...

Proof of Triangle Inequality (Absolute Values)

Solution: Triangle Inequality Statement: For all real numbers x and y, |x + y| ≤ |x| + |y| (a) Verification Case (i): x = 2, y = 3 |x + y| = |2 + 3| = |5| = 5 |x| + |y| = |2| + |3| = 2 + 3 = 5 ∴ |x + y| = |x| + |y| Case (ii): x = −2, y = −3 |x + y| = |−2 − 3| = |−5| = 5 |x| + |y| = |−2| + |−3| = 2 + 3 = 5 ∴ |x + y| = |x| + |y| Case (iii): x = −2, y = 3 |x + y| = |−2 + 3| = |1| = 1 |x| + |y| = |−2| + |3| = 2 + 3 = 5 ∴ |x + y| ≤ |x| + |y| (b) Proof for all real numbers We prove the inequality by considering different cases. Case 1: x ≥ 0, y ≥ 0 |x + y| = x + y = |x| + |y| Hence, |x + y| ≤ |x| + |y|. Case 2: x ≤ 0, y ≤ 0 |x + y| = −(x + y) = −x − y = |x| + |y| Hence, |x + y| ≤ |x| + |y|. Case 3: x and y have opposite signs In this case, the sum x + y is reduced in magnitude. Therefore, |x + y| < |x| + |y| Hence, the inequality holds. Therefore, the Triangle Inequality holds for all real numbers x and ...

Maximum and Minimum of Two Numbers Using Absolute Value (With Proof)

Max and Min of Two Numbers Using Absolute Value 📘 Need help with Mathematics? Learn Mathematics with Ajay Pathak on Preply. 👉 Click here to book a lesson Maximum and Minimum of Two Numbers Using Absolute Value The maximum and minimum of two real numbers a and b can be expressed using the absolute value function. These formulas are very useful in mathematical analysis and proofs. 1. Formula for Maximum max(a, b) = (a + b + |a − b|) / 2 Proof Case 1: a ≥ b a − b ≥ 0 ⇒ |a − b| = a − b (a + b + |a − b|) / 2 = (a + b + (a − b)) / 2 = a Hence, max(a, b) = a . Case 2: b > a a − b < 0 ⇒ |a − b| = b − a (a + b + |a − b|) / 2 = (a + b + (b − a)) / 2 = b Hence, max(a, b) = b . 2. Formula for Minimum min(a, b) = (a + b − |a − b|) / 2 Proof Case 1: a ≤ b a − b ≤ 0 ⇒ |a − b| = b − a (a + b − |a − b|) / 2 = (a + b − (b − a)) / 2 = a Hence, min(a, b) = a . ...

Best Math Tutor

📘 Learn Mathematics With Ajay Pathak Hello everyone! 👋 My name is Ajay Pathak , and I am a Mathematics tutor with experience in teaching: School-level Mathematics IGCSE & O Level Additional Mathematics BSc & Engineering Mathematics Calculus, ODE, Linear Algebra & More If you are looking for clear explanations, structured lessons, weekly tests, and strong exam preparation, I would be happy to guide you. 👉 Book Your Lesson You can check my Preply tutoring profile and book a lesson using the link below: 📌 Click Here to Visit My Preply Profile Feel free to contact me anytime if you have questions. Looking forward to helping you succeed in Mathematics!

Probability and Statistics GTU: BE03000251 Semester 3 Formula

Probability and Statistics — Formula Book (GTU: BE03000251) Probability and Statistics — Formula Book GTU: BE03000251 — Semester 3 Contents Unit 1: Basic Probability Unit 2: Special Probability Distributions Unit 3: Basic Statistics (Grouped and Ungrouped Data) Correlation and Regression Unit 4: Hypothesis Testing (Applied) Unit 5: Curve Fitting by Least Squares Appendices Unit 1: Basic Probability Basic concepts Experiment , Outcome , Sample space \(S\). Event : subset \(A\subseteq S\). Probability measure \(P\) satisfies: \(0\le P(A)\le1\), \(P(S)=1\), countable additivity. Axioms and simple results \(P(\varnothing)=0,\qquad P(S)=1.\) \(P(A^c)=1-P(A).\) Addition rule \(P(A\cup B)=P(A)+P(B)-P(A\cap B).\) For mutually exclusive events (\(A\cap B=\varnothing\)): \(P(A\cup B)=P(A)+P(B)\). Conditional probabili...